Aztec Network
20 Sep
## min read

Explaining the “Network” in Aztec Network

An in-depth look at the intricate network structure within the Aztec ecosystem, detailing its components and functionalities.

Share
Written by
Jon Wu
Edited by

A look into the pieces that comprise a private zkRollup

Aztec Network is a privacy-first zkRollup on Ethereum. Most people who are fans of Aztec understand the public nature of Ethereum and how Aztec serves to solve Ethereum’s drawbacks: privacy and scalability.

In this piece we want to underscore the elements of Aztec’s network architecture and offer a sense for how the different pieces work together to enable a privacy layer for Ethereum DeFi, DAOs, and NFTs.

It complements our more basic piece about how Aztec’s UTXO-based privacy architecture works, which can be found here.

As a guide to the anatomy of a transaction traversing Aztec’s network, we’ve supplied a handy dandy diagram:

User Transactions

It all starts with the most important element in the whole flow — a user making a private transaction.Typically the user interacts with a front-end (either the first-party maintained zk.money or an Ethereum app which has integrated the Aztec Connect SDK).User accounts are accessed and managed by the Aztec Connect SDK, and like Ethereum are comprised of public and private keys. Unlike Ethereum, however, Aztec accounts have a single public key but two types of private key: viewing keys and a spending keys.

The viewing key allows the holder to view a user’s owned encrypted notes think of this like a pair of decoder glasses that allows the holder to see a user’s note balances, but no one else’s:

The spending key on the other hand is like a key that allows the holder to unlock individual encrypted notes and spend them — either in a send, withdraw, or DeFi transaction.

You can register different spending keys to different devices, preventing the need to paste sensitive information across devices.

The Aztec SDK

The Aztec SDK manages all this through an easy-to-use API that allows developers to integrate account registration, recovery, and asset transfer functionality in a few lines.

The SDK retrieves encrypted state and presents it to the developer in a way that’s easy to serve to users, all while managing private information such that applications never have access.

When users grant applications access to their account, the SDK helps users spend funds, computing state updates with a proof of correctness. It manage state (what users own) and facilitates user transactions (updating state by constructing proofs).

In comparison, an Ethereum transaction is a request for a state update along with authorization from a private key (a signature). In Aztec, the SDK is itself computing the state update, and then sending the proof of correctness to an Aztec sequencer.

The sequencer is therefore not doing any real computation or state update but just offering a compression service — aggregating user proofs (“inner proofs”) into a larger single outer proof.

It’s worth noting also that the sequencer cannot reasonably discriminate between transactions, since all it receives is an encrypted proof of correctness for an underlying transaction, which is generated client-side in the user’s browser. This makes targeted censorship of specific transactions essentially impossible.

➡️ Learn more about building with Aztec with our SDK documentation

Falafel: the Aztec Client

Once the transaction is created, it’s sent to Falafel. Falafel is a Typescript implementation of Aztec’s client — think of it like Go Ethereum (geth) or any other Ethereum client that forms an interface between the user and the actual blockchain.

Falafel is offchain software that accepts user proofs (encrypted transactions), aggregates them, creates a rollup proof, and then sends rollup proofs to the rollup contract for validation. This large proof comprised of many user transactions is what we call an “outer proof” (the inner proofs being the proofs containing each individual user transaction).

Falafel is just a batching mechanism that creates a big mega proof that adds all the inner proofs together proving that all the underlying state updates are valid.

Some note on privacy and censorship resistance in the network’s end state: the only reasonable censorship a sequencer can undertake is refusal to process blocks and attempting to interrupt network liveness.

If we analogize sequencers who run Falafel as mailmen, the only thing they can do is quit delivering the mail, but they can’t open specific letters and envelopes, nor can they reject letters in a targeted way because there is no revealing information.

Anyone can run the Falafel client and become a sequencer. The Aztec sequencer proposes blocks — sets of encrypted transactions.

Our goal is to have a network of sequencers run Falafel, processing and batching transactions for publication. Currently, though, Aztec serves as the sole network sequencer.

➡️️ Explore the Falafel repo here

Rollup Contract

Once the outer proof is constructed, it’s sent to the on-chain rollup contract, a smart contract published on Ethereum (you can find it at this address).

The outer proof sent to the rollup contract can contain a variety of encrypted user actions: withdrawals, deposits, new account registrations, or Aztec Connect bridge transactions.

The outer proof is sent to the rollup contract for validation and state updates. The rollup contract then runs through each user transaction and executes the necessary logic on Ethereum Layer 1.

Deposit: Users move funds to the Aztec rollup contract, which locks funds and then credits the user with an L2 representation of those funds once the rollup is published to Ethereum.

Withdrawal: Users indicate they want to send funds out of Aztec, the rollup contract confirms the value of the singular note the user is spending, nullifies internal Aztec funds, and sends its L1 funds to the specified withdrawal address.

DeFi interaction: the rollup contract calls out to an Aztec Connect Bridge Contract, which serves as an interface to Layer 1 smart contracts.Bridge contracts are all fundamentally structured as two-input, two-output swaps: the rollup contract sends 1–2 assets into an L1 protocol, and atomically receives 1–2 assets back (a synchronous bridge like a swap) or returns token assets back at a later date (an asynchronous bridge like a timed vault). In the next block, it subsequently generates a claim note for the user to claim the returned asset at a later date.

You can think of this structure like inputting A + B and getting C + D back, either now or later:

Virtual assets are an Aztec-specific representation of token positions that can’t immediately be returned to the rollup — think vault positions, fixed term positions, or anything else that is escrowed for redemption at a later date.

In all cases, smart contract logic stays on Layer 1. Users are interacting with Layer 1 liquidity and smart contracts — with no liquidity fragmentation or logic execution “on Aztec” whatsoever!Aztec Connect serves as a privacy-and-batching layer for the battle-tested contracts and liquidity on Ethereum.

Subsidy Contract

We recently made an upgrade to Aztec that allows any party to fund subsidies for bridge transactions. Subsidies are an important part of bootstrapping bridges on Aztec while user volume gets to critical mass.Take for an example a bridge that supports 50-unit transaction batches. Think of this like a bus with 50 seats, which only departs for its destination once the bus is full.On any given day, three things could happen:

  1. All 50 “seats” get filled — yay!
  2. Not all 50 seats get filled, and people wait for a whiiiile before the rest of the seats get filled
  3. Someone at some point gets sick of waiting and pays for the whole batch to go down to Ethereum and execute

The “someone” in scenario 3 could be an individual electing to pay for the number of seats remaining, OR it could be the bus service itself. Protocols who want the bridge to be performant even before bus seats are selling out can subsidize regular departures, ensuring timely performance.Previously, Aztec offered these subsidies to our partners by managing a subsidy balance within Falafel, Aztec Network’s client. We would use the multisig to manually top up Falafel’s subsidy balance on a bridge-contract to bridge-contract basis.Now, a contract has been deployed that allows any EOA or contract account to subsidize bridge contracts under a certain set of parameters:

  1. Bridge ID
  2. Subsidy amount committed
  3. Bridge contract backstop (how often to subsidize running of the bridge, e.g. “6 hour backstop” means if the bridge reaches 6 hours without inclusion in a block, it automatically calls the subsidy contract for funds and inclusion in the next block)

When the subsidy amount runs out based on the given parameters, the subsidy contract simply stops returning a subsidy.

Previously, subsidy funding happened completely offchain (partner sends funds to our multisig, we then send it from the multisig to Falafel). Partners would have to trust us to use the funds wisely, do the appropriate accounting within Falafel, and hold the funds. It also required interaction with the Aztec Core Team.

Now, the subsidy contract allows anyone to permissionlessly fund bridge contracts, regardless of author or origin. The network owns the subsidy, and any sequencer running Falafel can claim it. It’s a step toward Aztec Network’s decentralization plan, making each part of the network stand on its own from the Aztec Core Team.

➡️  Explore the subsidy contract here

Conclusion

With Aztec, privacy is a feature you can now add to any Ethereum contract — and now you know exactly how it works!We’re excited to see developers and users explore the full potential of Aztec’s privacy architecture.If you’re a developer, check out the following resources:

And jump into our Discord for questions on how Aztec works!

Explaining the “Network” in Aztec Network was originally published in Aztec on Medium, where people are continuing the conversation by highlighting and responding to this story.

Read more
Aztec Network
Aztec Network
22 Oct
xx min read

Bringing Private Over-The-Counter (OTC) Swaps to Crypto

Transparent OTC Trades Are Holding the Industry Back

OTC trading is fundamental to how crypto markets function. It enables better price negotiations than what you'll find on public order books and facilitates trading of illiquid assets that barely exist on exchanges. Without OTC markets, institutional crypto trading would be nearly impossible. But here's the massive problem: every single OTC transaction leaves a permanent, public trace. 

Let's say you're a fund manager who needs to sell 1,000 BTC for USDC on Base. In a traditional OTC trade, your Bitcoin leaves your wallet and becomes visible to everyone on Bitcoin's blockchain. Through cross-chain settlement, USDC then arrives in your Base wallet, which is also visible to everyone on Base's blockchain. 

At this point, block explorers and analytics firms can connect these transactions through pattern analysis. As a result, your trading patterns, position sizes, and timing become public data, exposing your entire strategy.

This isn't just about privacy; transparent OTC creates serious operational and strategic risks. These same concerns have moved a significant portion of traditional markets to private off-exchange trades. 

Why Traditional Finance Moved to Private Markets

In TradFi, institutions don't execute large trades on public order books for many reasons. In fact, ~13% of all stocks in the US are now traded in dark pools, and more than 50% of trades are now off-exchange. 

They use private networks, dark pools, and OTC desks specifically because:

  • Strategy Protection: Your competitors can't front-run your moves
  • Better Execution: No market impact from revealing large positions
  • Regulatory Compliance: Meet reporting requirements without public disclosure
  • Operational Security: Protect proprietary trading algorithms and relationships

While OTC trading is already a major part of the crypto industry, without privacy, true institutional participation will never be practical. 

Now, Aztec is making this possible. 

Moving Whale-Sized Bags Privately on Aztec

We built an open-source private OTC trading system using Aztec Network's programmable privacy features. Because Aztec allows users to have private, programmable, and composable private state, users aren’t limited to only owning and transferring digital assets privately, but also programming and composing them via smart contracts.

If you’re new to Aztec, you can think of the network as a private world computer, with full end-to-end programmable privacy. A private world computer extends Ethereum to add optional privacy at every level, from identity and transactions to the smart contracts themselves. 

To build a private OTC desk, we leveraged all these tools provided by Aztec to implement a working proof of concept. Our private OTC desk is non-custodial and leverages private smart contracts and client-side proving to allow for complete privacy of the seller and buyer of the OTC.

How It Actually Works

For Sellers:

  1. Deploy a private escrow contract (only you know it exists at this stage)
  2. Initialize contract and set the terms (asset type, quantity, price)
  3. Deposit your assets into the contract
  4. After it’s been deployed, call a private API (the order book service)

For Buyers:

  1. Discover available orders through our privacy-preserving API
  2. Select trades that match your criteria
  3. Complete the seller's partial note with your payment
  4. Execute atomic swap – you get their assets, they get your payment

The Magic: Partial Notes are the technical breakthrough that make collaborative, asynchronous private transactions possible. Sellers create incomplete payment commitments that buyers can finish without revealing the seller's identity. It's like leaving a blank check that only the right person can cash, but neither party knows who the other is.

Privacy guarantees include: 

  • Complete Privacy: Neither party knows who they're trading with
  • Strategy Protection: Your trading patterns stay private
  • Market Impact Minimization: No public signals about large movements
  • Non-custodial: Direct peer-to-peer settlement, no intermediaries

Key Innovations

Private Contract Deployment: Unlike public decentralized exchanges where smart contracts are visible on the blockchain, the escrow contracts in this system are deployed privately, meaning that only the participants involved in the transaction know these contracts exist.

Partial Note Mechanism: This system uses cryptographic primitives that enable incomplete commitments to be finalized or completed by third parties, all while preventing those third parties from revealing or accessing any pre-existing information that was part of the original commitment.

Privacy-Preserving Discovery: The orderflow service maintains knowledge of aggregate trading volumes and overall market activity, but it cannot see the details of individual traders, including their specific trade parameters or personal identities.

Atomic Execution: The smart contract logic is designed to ensure that both sides of a trade occur simultaneously in a single atomic operation, meaning that if any part of the transaction fails, the entire transaction is rolled back and neither party's assets are transferred.

Build with us!

Our prototype for this is open-sourced here, and you can read about the proof of concept directly from the developer here

We're inviting teams to explore, fork, and commercialize this idea. The infrastructure for private institutional trading needs to exist, and Aztec makes it possible today. Whether you're building a private DEX, upgrading your OTC desk, or exploring new DeFi primitives, this codebase is your starting point. 

The traditional finance world conducts trillions in private OTC trades. It's time to bring that scale to crypto, privately.

To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Aztec Network
Aztec Network
15 Oct
xx min read

Your Private Money Yearns for a Private Economy

Watch this: Alice sends Zcash. Bob receives USDC on Aztec. Nobody, not even the system facilitating it, knows who Alice or Bob are.

And Bob can now do something with that money. Privately.

This is the connection between private money and a private economy where that money can actually be used.

Zcash has already achieved something monumental: truly private money. It’s the store of value that Bitcoin promised (but made transparent). Like, digital gold that actually stays hidden.

But here's the thing about gold - you don't buy coffee with gold bars. You need an economy where that value can flow, work, and grow. Privately.

Money Under the Mattress

While other projects are trying to bolt privacy onto existing chains as an afterthought, Zcash is one of the oldest privacy projects in Web3. It's achieved what dozens of projects are still chasing: a truly private store of value.

Total Shielded ZEC Value (USD): Sep 16 - Oct 14 | Source: zkp.baby/

This is critical infrastructure for freedom. The ability to store value privately is a fundamental right, a hedge against surveillance, and a given when using cash. We need a system that provides the same level of privacy guarantees as cash. Right now, there's over $1.1 billion sitting in Zcash's shielded pool, private wealth that's perfectly secure but essentially frozen.

Why frozen? Because the moment that shielded $ZEC tries to do anything beyond basic transfers: earn yield, get swapped for stablecoins, enter a liquidity pool, it must expose itself. The privacy in this format is destroyed.

This isn't Zcash's failure. They built exactly what they set out to build: the world's best private store of value. The failure is that the rest of crypto hasn't built where that value can actually work.

The Privacy Landscape Has an Imbalance

What happens when you want to do more than just send money? What happens when you want privacy after you transfer your money?

Private Digital Money (i.e., “Transfer Privacy,” largely solved by Zcash):

  • Zcash: est. 2016
  • Everyone else: building variants of digital money at the transaction or identity level
    • Monero
    • Ethereum privacy pools
    • 0xbow
    • Payy
    • Every privacy stablecoin project
    • Every confidential L2
    • Every privacy project you've ever heard of

Private World Computer (i.e., After-the-Transfer Privacy):

  • Aztec

Everyone else is competing to build better ways to hide money. Zcash has already built the private store of value, and Aztec has built the only way to use hidden money.

The Locked Liquidity Problem

Here's the trillion-dollar question: What good is private money if you can't use it?

Right now, Zcash's shielded pool contains billions in value. This is money in high-security vaults. But unlike gold in vaults that can be collateralized, borrowed against, or deployed, this private value just sits there.

Every $ZEC holder faces two impossible choices:

  1. Keep it shielded and forfeit all utility
  2. Unshield it to use it and forfeit all privacy

Our demo breaks this false sense of choice. For the first time, shielded value can move to a place where it remains private AND becomes useful.

The Private World Computer

Here's how you can identify whether you’re dealing with a private world computer, or just private digital money:

Without a private world computer (every other privacy solution):

  • Receive salary privately → Can't invest it
  • Store savings privately → Can't earn yield
  • Send money privately → Recipient can't use it privately

With a private world computer (only Aztec):

  • Receive salary privately → Invest it privately
  • Store savings privately → Earn APY privately
  • Send payment privately → Recipient spends it privately

This is basic financial common sense. Your money should grow. It should work. It should be useful.

The technical reality is that this requires private smart contracts. Aztec is building the only way to interact privately with smart contracts. These smart contracts themselves can remain completely hidden. Your private money can finally do what money is supposed to do: work for you.

What We Actually Built

Our demo proves these two worlds can connect:

  1. The Vault: Zcash
  2. The Engine: Aztec (where private money becomes useful)

We built the bridge between storing privately and doing privately.

The technical innovation - "partial notes" - are like temporary lockboxes that self-destruct after one use. Money can be put privately into these lockboxes, and a key can be privately handed to someone to unlock it. No one knows who put the money in, where the key came from, or who uses the key. You can read more about how they work here. But what matters isn't the mechanism. 

What matters is that Alice's Zcash can become Bob's working capital on Aztec without anyone knowing about either of them.

As a result, Bob receives USDC that he can:

  • Earn yield on
  • Trade with
  • Pay suppliers with
  • Build a business on
  • All privately

Why This Required Starting from Scratch (and 8 years of building)

You can't bolt privacy onto existing systems. You can't take Ethereum and make it private. You can't take a transparent smart contract platform and add privacy as a feature.

Aztec had to be built from the ground up as a private world computer because after-the-transfer privacy requires rethinking everything:

  • How state is managed
  • How contracts execute
  • How proofs are generated
  • How transactions are ordered

This is why there's only one name building fully private smart contracts. From the beginning, Aztec has been inspired by the work Zcash has done to create a private store of value. That’s what led to the vision for a private world computer.

Everyone else is iterating on the same transfer privacy problem. Aztec solves a fundamentally different problem.

The Obvious Future

Once you see it, you can't unsee it: Privacy without utility is only the first step.

Every privacy project will eventually need what Aztec built. Because their users will eventually ask: "Okay, my money is private... now what?"

  • Zcash users will want their $ZEC to earn yield
  • Privacy pool users will want to do more than just mix
  • Private stablecoin users will want to actually… use their stablecoins

This demo that connects Zcash to Aztec is the first connection between the old world (private transfers) and the new world (private everything else).

What This Means

For Zcash Holders: Your shielded $ZEC can finally do something without being exposed.

For Developers: Stop trying to build better mattresses to hide money under. Start building useful applications on the only platform that keeps them private. 

For the Industry: The privacy wars are over. There's transfer privacy (solved by Zcash) and after-the-transfer privacy (just Aztec).

What’s Next? 

This demo is live. The code is open source. The bridge between private money and useful private money exists.

But this is just the beginning. Every privacy project needs this bridge. Every private payment network needs somewhere for those payments to actually be used.

We're not competing with transfer privacy. We're continuing it.

Your private money yearns for the private economy.

Welcome to after-the-transfer privacy. Welcome to Aztec.

Aztec Network
Aztec Network
8 Oct
xx min read

Aztec: The Private World Computer

Privacy has emerged as a major driver for the crypto industry in 2025. We’ve seen the explosion of Zcash, the Ethereum Foundation’s refocusing of PSE, and the launch of Aztec’s testnet with over 24,000 validators powering the network. Many apps have also emerged to bring private transactions to Ethereum and Solana in various ways, and exciting technologies like ZKPassport that privately bring identity on-chain using Noir have become some of the most talked about developments for ushering in the next big movements to the space. 

Underpinning all of these developments is the emerging consensus that without privacy, blockchains will struggle to gain real-world adoption. 

Without privacy, institutions can’t bring assets on-chain in a compliant way or conduct complex swaps and trades without revealing their strategies. Without privacy, DeFi remains dominated and controlled by advanced traders who can see all upcoming transactions and manipulate the market. Without privacy, regular people will not want to move their lives on-chain for the entire world to see every detail about their every move. 

While there's been lots of talk about privacy, few can define it. In this piece we’ll outline the three pillars of privacy and gives you a framework for evaluating the privacy claims of any project. 

The Three Pillars of Privacy 

True privacy rests on three essential pillars: transaction privacy, identity privacy, and computational privacy. It is only when we have all three pillars that we see the emergence of a private world computer. 

Transaction: What is being sent?

Transaction privacy means that both inputs and outputs are not viewable by anyone other than the intended participants. Inputs include any asset, value, message, or function calldata that is being sent. Outputs include any state changes or transaction effects, or any transaction metadata caused by the transaction. Transaction privacy is often primarily achieved using a UTXO model (like Zcash or Aztec’s private state tree). If a project has only the option for this pillar, it can be said to be confidential, but not private. 

Identity: Who is involved?

Identity privacy means that the identities of those involved are not viewable by anyone other than the intended participants. This includes addresses or accounts and any information about the identity of the participants, such as tx.origin, msg.sender, or linking one’s private account to public accounts. Identity privacy can be achieved in several ways, including client-side proof generation that keeps all user info on the users’ devices. If a project has only the option for this pillar, it can be said to be anonymous, but not private. 

Computation: What happened? 

Computation privacy means that any activity that happens is not viewable by anyone other than the intended participants. This includes the contract code itself, function execution, contract address, and full callstack privacy. Additionally, any metadata generated by the transaction is able to be appropriately obfuscated (such as transaction effects, events are appropriately padded, inclusion block number are in appropriate sets). Callstack privacy includes which contracts you call, what functions in those contracts you’ve called, what the results of those functions were, any subsequent functions that will be called after, and what the inputs to the function were. A project must have the option for this pillar to do anything privately other than basic transactions. 

From private money to a private world computer 

Bitcoin ushered in a new paradigm of digital money. As a permissionless, peer-to-peer currency and store of value, it changed the way value could be sent around the world and who could participate. Ethereum expanded this vision to bring us the world computer, a decentralized, general-purpose blockchain with programmable smart contracts. 

Given the limitations of running a transparent blockchain that exposes all user activity, accounts, and assets, it was clear that adding the option to preserve privacy would unlock many benefits (and more closely resemble real cash). But this was a very challenging problem. Zcash was one of the first to extend Bitcoin’s functionality with optional privacy, unlocking a new privacy-preserving UTXO model for transacting privately. As we’ll see below, many of the current privacy-focused projects are working on similar kinds of private digital money for Ethereum or other chains. 

Now, Aztec is bringing us the final missing piece: a private world computer.

A private world computer is fully decentralized, programmable, and permissionless like Ethereum and has optional privacy at every level. In other words, Aztec is extending all the functionality of Ethereum with optional transaction, identity, and computational privacy. This is the only approach that enables fully compliant, decentralized applications to be built that preserve user privacy, a new design space that we see as ushering in the next Renaissance for the space. 

Where are we now? 

Private digital money

Private digital money emerges when you have the first two privacy pillars covered - transactions and identity - but you don’t have the third - computation. Almost all projects today that claim some level of privacy are working on private digital money. This includes everything from privacy pools on Ethereum and L2s to newly emerging payment L1s like Tempo and Arc that are developing various degrees of transaction privacy 

When it comes to digital money, privacy exists on a spectrum. If your identity is hidden but your transactions are visible, that's what we call anonymous. If your transactions are hidden but your identity is known, that's confidential. And when both your identity and transactions are protected, that's true privacy. Projects are working on many different approaches to implement this, from PSE to Payy using Noir, the zkDSL built to make it intuitive to build zk applications using familiar Rust-like syntax. 

The Private World Computer 

Private digital money is designed to make payments private, but any interaction with more complex smart contracts than a straightforward payment transaction is fully exposed. 

What if we also want to build decentralized private apps using smart contracts (usually multiple that talk to each other)? For this, you need all three privacy pillars: transaction, identity, and compute. 

If you have these three pillars covered and you have decentralization, you have built a private world computer. Without decentralization, you are vulnerable to censorship, privileged backdoors and inevitable centralized control that can compromise privacy guarantees. 

Aztec: the Private World Computer 

What exactly is a private world computer? A private world computer extends all the functionality of Ethereum with optional privacy at every level, so developers can easily control which aspects they want public or private and users can selectively disclose information. With Aztec, developers can build apps with optional transaction, identity, and compute privacy on a fully decentralized network. Below, we’ll break down the main components of a private world computer.

Private Smart Contracts 

A private world computer is powered by private smart contracts. Private smart contracts have fully optional privacy and also enable seamless public and private function interaction. 

Private smart contracts simply extend the functionality of regular smart contracts with added privacy. 

As a developer, you can easily designate which functions you want to keep private and which you want to make public. For example, a voting app might allow users to privately cast votes and publicly display the result. Private smart contracts can also interact privately with other smart contracts, without needing to make it public which contracts have interacted. 

Aztec’s Three Pillars of Privacy

Transaction: Aztec supports the optionality for fully private inputs, including messages, state, and function calldata. Private state is updated via a private UTXO state tree.

Identity: Using client-side proofs and function execution, Aztec can optionally keep all user info private, including tx.origin and msg.sender for transactions. 

Computation: The contract code itself, function execution, and call stack can all be kept private. This includes which contracts you call, what functions in those contracts you’ve called, what the results of those functions were, and what the inputs to the function were. 

Decentralization

A decentralized network must be made up of a permissionless network of operators who run the network and decide on upgrades. Aztec is run by a decentralized network of node operators who propose and attest to transactions. Rollup proofs on Aztec are also run by a decentralized prover network that can permissionlessly submit proofs and participate in block rewards. Finally, the Aztec network is governed by the sequencers, who propose, signal, vote, and execute network upgrades.

What Can You Build with a Private World Computer?

Private DeFi

A private world computer enables the creation of DeFi applications where accounts, transactions, order books, and swaps remain private. Users can protect their trading strategies and positions from public view, preventing front-running and maintaining competitive advantages. Additionally, users can bridge privately into cross-chain DeFi applications, allowing them to participate in DeFi across multiple blockchains while keeping their identity private despite being on an existing transparent blockchain.

Private Dark Pools

This technology makes it possible to bring institutional trading activity on-chain while maintaining the privacy that traditional finance requires. Institutions can privately trade with other institutions globally, without having to touch public markets, enjoying the benefits of blockchain technology such as fast settlement and reduced counterparty risk, without exposing their trading intentions or volumes to the broader market.

Private RWAs & Stablecoins

Organizations can bring client accounts and assets on-chain while maintaining full compliance. This infrastructure protects on-chain asset trading and settlement strategies, ensuring that sophisticated financial operations remain private. A private world computer also supports private stablecoin issuance and redemption, allowing financial institutions to manage digital currency operations without revealing sensitive business information.

Compliant Apps

Users have granular control over their privacy settings, allowing them to fine-tune privacy levels for their on-chain identity according to their specific needs. The system enables selective disclosure of on-chain activity, meaning users can choose to reveal certain transactions or holdings to regulators, auditors, or business partners while keeping other information private, meeting compliance requirements.

Let’s build

The shift from transparent blockchains to privacy-preserving infrastructure is the foundation for bringing the next billion users on-chain. Whether you're a developer building the future of private DeFi, an institution exploring compliant on-chain solutions, or simply someone who believes privacy is a fundamental right, now is the time to get involved.

Follow Aztec on X to stay updated on the latest developments in private smart contracts and decentralized privacy technology. Ready to contribute to the network? Run a node and help power the private world computer. 

The next Renaissance is here, and it’s being powered by the private world computer.

Aztec Network
Aztec Network
24 Sep
xx min read

Testnet Retro - 2.0.3 Network Upgrade

Special thanks to Santiago Palladino, Phil Windle, Alex Gherghisan, and Mitch Tracy for technical updates and review.

On September 17th, 2025, a new network upgrade was deployed, making Aztec more secure and flexible for home stakers. This upgrade, shipped with all the features needed for a fully decentralized network launch, includes a completely redesigned slashing system that allows inactive or malicious operators to be removed, and does not penalize home stakers for short outages. 

With over 23,000 operators running validators across 6 continents (in a variety of conditions), it is critical not to penalize nodes that temporarily drop due to internet connectivity issues. This is because users of the network are also found across the globe, some of whom might have older phones. A significant effort was put into shipping a low-memory proving mode that allows older mobile devices to send transactions and use privacy-preserving apps. 

The network was successfully deployed, and all active validators on the old testnet were added to the queue of the new testnet. This manual migration was only necessary because major upgrades to the governance contracts had gone in since the last testnet was deployed. The new testnet started producing blocks after the queue started to be “flushed,” moving validators into the rollup. Because the network is fully decentralized, the initial flush could have been called by anyone. The network produced ~2k blocks before an invalid block made it to the chain and temporarily stalled block production. Block production is now restored and the network is healthy. This post explains what caused the issue and provides an update on the current status of the network. 

Note: if you are a network operator, you must upgrade to version 2.0.3 and restart your node to participate in the latest testnet. If you want to run a node, it’s easy to get started.

What’s included in the upgrade? 

This upgrade was a team-wide effort that optimized performance and implemented all the mechanisms needed to launch Aztec as a fully decentralized network from day 1. 

Feature highlights include: 

  • Improved node stability: The Aztec node software is now far more stable. Users will see far fewer crashes and increased performance in terms of attestations and blocks produced. This translates into a far better experience using testnet, as transactions get included much faster.
  • Boneh–Lynn–Shacham (BLS) keys: When a validator registers on the rollup, they also provide keys that allow BLS signature aggregation. This unlocks future optimizations where signatures can be combined via p2p communication, then verified on Ethereum, while proving that the signatures come from block proposers.
  • Low-memory proving mode: The client-side proving requirements have dropped dramatically from 3.7GB to 1.3GB through a new low-memory proving mode, enabling older mobile devices to send Aztec transactions and use apps like zkPassport. 
  • AVM performance: The Aztec Virtual Machine (AVM) performance has seen major improvements with constraint coverage jumping from 0% to approximately 90-95%, providing far more secure AVM proving and more realistic proving performance numbers from provers. 
  • Flexible key management: The system now supports flexible key management through keystores, multi-EOA support, and remote signers, eliminating the need to pass private keys through environment variables and representing a significant step toward institutional readiness. 
  • Redesigned slashing: Slashing has been redesigned to provide much better consensus guarantees. Further, the new configuration allows nodes not to penalize home stakers for short outages, such as 20-minute interruptions. 
  • Slashing Vetoer: The Slasher contract now has an explicit vetoer: an address that can prevent slashing. At Mainnet, the initial vetoer will be operated by an independent group of security researchers who will also provide security assessments on upgrades. This acts as a failsafe in the event that nodes are erroneously trying to slash other nodes due to a bug.

With these updates in place, we’re ready to test a feature-complete network. 

What happened after deployment? 

As mentioned above, block production started when someone called the flush function and a minimum number of operators from the queue were let into the validator set. 

Shortly thereafter, while testing the network, a member of the Aztec Labs team spun up a “bad” sequencer that produced an invalid block proposal. Specifically, one of the state trees in the proposal was tampered with. 

Initial block production 

The expectation was that this would be detected immediately and the block rejected. Instead, a bug was discovered in the validator code where the invalid block proposal wasn't checked thoroughly enough. In effect, the proposal got enough attestations, so it was posted to the rollup. Due to extra checks in the nodes, when the nodes pulled the invalid block from Ethereum, they detected the tampered tree and refused to sync it. This is a good outcome as it prevented the attack. Additionally, prover nodes refused to prove the epoch containing the invalid block. This allowed the rollup to prune the entire bad epoch away. After the prune, the invalid state was reset to the last known good block.

Block production stalled

The prune revealed another, smaller bug, where, after a failed block sync, a prune does not get processed correctly, requiring a node restart to clear up. This led to a 90-minute outage from the moment the block proposal was posted until the testnet recovered. The time was equally split between waiting for pruning to happen and for the nodes to restart in order to process the prune.

The Fix

Validators were correctly re-executing all transactions in the block proposals and verifying that the world state root matched the one in the block proposal, but they failed to check that intermediate tree roots, which are included in the proposal and posted to the rollup contract on L1, were also correct. The attack tweaked one of these intermediate roots while proposing a correct world state root, so it went unnoticed by the attestors. 

As mentioned above, even though the block made it through the initial attestation and was posted to L1, the invalid block was caught by the validators, and the entire epoch was never proven as provers refused to generate a proof for the inconsistent state. 

A fix was pushed that resolved this issue and ensured that invalid block proposals would be caught and rejected. A second fix was pushed that ensures inconsistent state is removed from the uncommitted cache of the world state.

Block production restored

What’s Next

Block production is currently running smoothly, and the network health has been restored. 

Operators who had previously upgraded to version 2.0.3 will need to restart their nodes. Any operator who has not upgraded to 2.0.3 should do so immediately. 

Attestation and Block Production rate on the new rollup

Slashing has also been functioning as expected. Below you can see the slashing signals for each round. A single signal can contain votes for multiple validators, but a validator's attester needs to receive 65 votes to be slashed.

Votes on slashing signals

Join us this Thursday, September 25, 2025, at 4 PM CET on the Discord Town Hall to hear more about the 2.0.3 upgrade. To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.