Aztec Network
18 Mar
## min read

Aztec’s ZK-ZK-Rollup, looking behind the cryptocurtain

Aztec's zk-zk rollup is a game-changer, blending privacy with scalability for a unique blockchain experience.

Share
Written by
Zac Williamson
Edited by

At Aztec we’re excited to have launched zk.money this week, enabling efficient, completely private transactions on the Ethereum blockchain.

JavaScript is not available.

So, it seems you noticed ... Yes, Private Layer 2 ZK-Rollup has arrived on Ethereum | https://t.co/p2DxzB4sm9

This is something we’ve building towards for almost 3 years now.

The privacy our users enjoy does not rely on trusted third parties or additional consensus algorithms. The security of our system is backed up by ironclad zero-knowledge cryptography, with the consensus of our network being derived directly from the strengh of Ethereum’s consensus protocol via our zero-knowledge proof verification smart contracts.

This is the first time a privacy-preserving rollup has been deployed to Ethereum, or any other public blockchain for that matter.

Getting to this point has been quite the adventure for us. When you trigger a private send from zk.money, your computer will grind through some of the most advanced number theoretic computations ever pushed through a web browser.

We’ve had to design a lot of new tech to pull this idea into the world. From inventing the cryptographic protocol we use and building an optimized proving system, to the backend server that aggregates and processes zero-knowledge transaction. This article is a dive into the tech behind our private ZK-rollup and its inner workings.

What is a private ZK-rollup?

Zero-Knowledge-rollups are a way of scaling Ethereum. Instead of having the blockchain processing every transaction in a block, the block’s transaction inputs and outputs are sent to Ethereum, along with a zero-knowledge proof that the transaction outputs have been correctly computed from the inputs. This reduces the computational burden on the network and reduces the amount of smart contract storage data that must be modified.

Traditional ZK-rollups aren’t privacy preserving despite their name; the ‘zero-knowledge’ refers to using ZK-Snarks for scaling only.

Private ZK-rollups are a different beast. As well as providing the scaling benefits, the transaction inputs/outputs are encrypted. The zero-knowledge proof that proves the correctness of every transaction also proves that the encrypted data was correctly derived from the non-encrypted ‘plaintext’ data. But the plaintext is known only to the users that constructed their private transactions.

The rollup cannot simply process a list of transactions like before, it must verify a list of zero-knowledge proofs that each validate a private transaction. (This extra layer of zero-knowledge proof verification is why they’re called ‘ZK-ZK-rollups’).

The result is reduced-cost transactions with full transaction privacy, even from the entity making the rollup! Both the identities of senders/recipients are hidden, as well as the values being transferred.

Despite this, users of the protocol can have complete confidence in the correctness of transactions (no double spending etc), because only legitimate transactions can produce a valid zero-knowledge proof of correctness.

Plonk: the world’s fastest universal ZK-SNARK

In theory ZK-ZK-rollups have been known about for several years, but nobody has managed to deploy one in practice, until now. There were an immense number of technical hurdles we had to overcome to get to this point, not least of all having to design our own ZK-SNARK protocol to get the job done!

Plonk is our state-of-the art ZK-SNARK, developed in-house by our chief scientist Ariel Gabizon and CTO Zac Williamson. Its fast proving times, expressive method of circuit arithmetisation and lack of circuit-specific trusted setups makes it ideal for blockchains. The Electric Coin Company, Mina Protocol, Matter Labs, Dusk Network and more are all using Plonk in their latest projects.

Aztec’s ZK-ZK-rollup architecture

Our architecture is composed of two programs that we have encoded into ZK-SNARK ‘circuits’: A privacy circuit and a rollup circuit.

The privacy circuit proves the correctness of a single private transaction. It is constructed by users that want to send private transactions, directly on their hardware to ensure no secrets are leaked.

The rollup circuit validates the correctness of a batch of privacy proofs (currently 128) and updates the rollup’s database with the new encrypted transaction data.

The rollup proofs are constructed by a rollup provider, a 3rd party that has access to significant computing resources (for the moment, Aztec are the rollup provider. Longer term we plan to decentralize the rollup service). The rollup provider is completely untrusted. They do not have access to any user data and only see the encrypted outputs of privacy proofs. This also makes it impossible to launch selective censorship attacks, because all transactions look like uniform random numbers.

Join-split private transactions are aggregated in batches of 32 by a rollup circuit. Rollup proofs are aggregated by a rollup-of-rollups circuit. This tiered aggregation structure allows us to scale to large block sizes and massively parallelize proof construction.

Building a ZK-ZK-rollup

Both the privacy circuit and the rollup circuit have two major challenges associated with them:

1. The privacy proof must be computed by the user, it cannot be delegated to a 3rd party.

2. The rollup circuit must efficiently verify the correctness of hundreds of privacy proofs.

The former is challenging because users are likely to interact with our software in a web browser. Executing cryptography code in a web browser is approximately 8x slower than running native compiled code, due to the WebAssembly specification lacking an opcode for full-width 64x64-to-128-bit multiplication.

The rollup circuit requires recursion, the ability to verify ZK-SNARK proofs inside ZK-SNARK circuits. Until recently, the consensus was that this required cryptographic primitives that are not supported by the Ethereum specification!

Both problems boil down to the fact that constructing ZK-SNARK proofs are slow. Basic arithmetic operations in a circuit must be converted into tens of thousands of 256-bit big-integer multiplications.

Previously existing ZK-SNARKs simply were not efficient enough to serve our needs and/or had unacceptable security trade-offs (like requiring trusted setup ceremonies for every circuit).

We put together Plonk to solve these problems. Plonk was the world’s first practical, fully succinct universal ZK-SNARK. Its ‘universal’ because only one trusted setup is required for every Plonk circuit (we completed our trusted setup ceremony, ignition, in 2020).

We have not been idle since then, and our software uses a much-improved version of our protocol, TurboPlonk.

Turbocharging Plonk

TurboPlonk is a dramatically enhanced version of our original Plonk protocol.Existing SNARK systems can only perform basic arithmetic operations: adding and multiplying prime field elements together.

This is a bit like having to work with a computer whose ALU only has `ADD` and `MUL` instructions! This is one of the reasons why SNARK proofs are so slow to construct — transforming a program into a circuit blows up the instruction count.

Put in context, existing SNARK arithmetic is about as complex as the kind of math you could program on a 1961 Programma 101.

A Programma 101. If we compare the progress of ZK-SNARK tech to the progress of computing tech, we are probably about here…

This restriction is because of the way the arithmetisation of traditional SNARKs is constructed. Elliptic curves are homomorphically additive ([A] + [B] = [A + B]). General homomorphic multiplication is not possible, but the bilinear-pairing enables a single homomorphic multiplication by the one way mapping into the target group.

Most ZK-SNARKs have arithmetic that directly maps to the available operations on an elliptic curve. This is codified into the Rank One Constraint System abstraction (R1CS), a method of defining circuits by creating ‘constraints’ composed of many additions, combined with a single multiplication. The current fastest R1CS-based proving system is the non-universal Groth16, currently used by Zcash.

Plonk and TurboPlonk are different. Their use of polynomial commitment schemes divorces their arithmetic from the limitations of elliptic curve group operations. i.e., we can multiply more than once per ‘constraint’.

In TurboPlonk, we use this flexibility to implement what we’re calling ‘custom gates’. Instead of just ADD and MUL gates, we have added gates that can do the following:* 2-bits of an XOR op* 2-bits of an AND op* 8-bit range checks* 2-bits of a Pedersen hash function

Still primitive by traditional standards, but at least the addition of logic operations moves us out of programmable calculator territory.

Efficient range checks, Pedersen hashes and logic operations are the bread and butter of the type of cryptography required in modern ZK-SNARK circuits. They make TurboPlonk not just competitive with non-universal proving systems like Groth16, but in many cases significantly faster.

Building the rollup proof and achieving recursion

Verifying a SNARK proof inside another SNARK circuit is traditionally a profoundly difficult task. SNARK circuits can only perform operations modulo a specific prime number p, a number defined by the elliptic curve you are using.

Verifying a SNARK proof requires elliptic curve arithmetic modulo a different prime number q. If you are using a single elliptic curve, qmust be different to pfor the curve to be secure!

How does one perform arithmetic modulo qwhen all your calculations are mod p? The ‘brute force’ approach requires emulating binary arithmetic using your ‘mod p’ arithmetic. Literally proving that individual wires in your circuit are 0 or 1, and assembling larger integers out of your bits.

You can then emulate your ‘mod q’ arithmetic using your emulated binary arithmetic.

This comes at a huge cost, the resulting system requires a revolting number of range checks, millions of them in fact.

This is the reason why recursion has proven to be a brick wall that blocks the deployment of advanced zk circuits on Ethereum. Existing solutions to the problem (e.g. Halo) utilize elegant number-theoretic constructions to get around this wall, but they require cryptographic operations that are not available within Ethereum smart contracts.

Fortunately, we designed TurboPlonk to be extremely good at efficient range checks (16x better than regular Plonk), to the point that we can sledgehammer our way through the problem and use the emulated field arithmetic approach.

We published our recursive construction in April last year. It is the only practical method of achieving recursive ZK-SNARKs on Ethereum to-date.

Achieving full privacy

Achieving full privacy in a rollup presents some unique challenges, other than the recursive SNARK problem.

We need to ensure that when a user spends a note, the spend transaction cannot be linked to any existing note.

This is achieved by using a set of ‘nullifiers’. Each nullifier represents a spent note. The encryption algorithm used to create nullifiers is different to note encryptions. This prevents linkability between notes and nullifiers.

Nullifier sets are problematic, however. To prove a note has **not** yet been spent, one needs to serve a *proof of non-membership*. To ensure our non-membership proofs have 128-bits of security, we need our nullifier Merkle tree to have a depth of 256!

Traditionally this would make membership and non-membership proofs of the nullifier set inordinately expensive. However, because of our custom Pedersen hash gate, our Pedersen hashes are 5x more efficient than systems that use R1CS and 18x more efficient than regular Plonk.

The result is that we can support depth-256 nullifier sets within our rollup architecture, which is not something that has been achieved to date.

Moreover, we are able to do this with a traditional well studied hash function. The collision-resistant properties of Pedersen hashes are well understood and we use Blake2s hashes whenever we need to model the hash function as a random oracle. We chose not use more recent SNARK-friendly hash functions due to the relative lack of cryptanalysis that has been performed on them, compared to the alternatives.

Building privacy proofs in a web browser

To give some scale to the problem, Zcash proofs can be generated in ~3 seconds on modern hardware. Universal SNARKs traditionally are about 10x slower than the Groth16 system currently used by Zcash. On top of that, we are using WebAssembly which is 8x slower than native code. That’s also assuming you can get multithreading working in the browser without browser support for WebAssembly threads (disabled after Spectre/Meltdown). Under these assumptions even a basic private transaction proof would take around 4 minutes to construct. Ouch!

But it gets worse! Our privacy circuit is larger than the Zcash circuits. We felt it was important to support social recovery of lost accounts, which requires an account management subcircuit within our privacy circuit. If we encoded our circuit in the traditional R1CS form, it would have approximately 260,000 constraints and would take up to *8 minutes* to prove in a browser.

Fortunately, TurboPlonk is up to the challenge. Our ability to efficiently evaluate hashes and bitwise logic operations crushes down the constraint count of our circuits to a more reasonable 65,535. We combined this with prover algorithms that are optimized for WebAssembly and a javascript SDK that implements a multithreaded variant of our WebAssembly prover using web workers.

On top of that, we have put together a new elliptic curve multi-scalar multipliation algorithm. It was, to our knowledge, the first time this algorithm had been implemented. It is also the fastest algorithm that currently exists for large multi-scalar multiplications.

A new algorithm for ecc multi-scalar multiplication

Traditional ecc multiplication algorithms represent elliptic curve points in 3-dimensions with `X, Y, Z` coordinates. This is in contrast to ‘affine’ coordinates, which just use an `X` and `Y` coordinate.

ECC operations can be split up into 3 distinct types: field additions, field multiplications and field inversions.

The problem with affine coordinates, is that elliptic curve addition requires 3 field multiplications and a field inversion. Inversions are about 250x more expensive than multiplications.

affine point addition (3 field muls + 1 field inversion)
jacobian point addition (16 field muls)

By adding a Z-coordinate, the field inversion is removed at the expense of adding 8 field multiplications.

Traditional ecc multiplication algorithms use the 3-coordinate representation because of this.

However, we exclusively work in affine coordinates. Our algorithms are constructed so that, when we need to perform point additions, we must perform many linearly independent additions. For each set of point additions, we use Montgomery’s batch inversion trick to compute all the required field inversions with a single field inversion, amortising away its high cost.

The result is an algorithm that is 30% faster than those that do not this technique.

Putting it all together

The result of this is that, on modern laptops, our privacy proof can be computed in a web browser in only 10 seconds. Advanced private transactions have finally become practical in a web-browser. Our latest in-development tech will continue to drop this number.

Looking into the future

Private transactions are just the tip of the iceberg. The most important goal for us over the next year is to support full programmability. Only by giving developers the tools to develop their own custom protocols and transaction flows will our vision of programmable private digital currencies be realised.

Our final architecture will support fully programmable privacy-preserving smart contracts, written in our new ZK-SNARK programming language Noir. Noir has been designed from the ground up to be optimized for compiling to our proving systems and for making privacy easy to work with.

The end goal is to support an active ecosystem of private cryptocurrencies, each with the ability to interface with existing L1 and L2 protocols, as well as DeFi protocols deployed directly onto Aztec’s rollup.

We have also not been idle with our R&D. Our latest cryptosystem, UltraPlonk, is close to deployment and will power our upgraded protocol architecture. UltraPlonk utilizes our latest plookup research, which enables efficient look-up tables within Plonk circuits. This is a major breakthrough that enables ZK-SNARK circuits to efficiently implement traditional algorithms that do not rely on prime-field arithmetic (e.g. AES128 encryption, SHA hashes, even basic things like integer arithmetic). It also allows us to efficiently add traditional memory abstractions into Noir, something completely foreign to existing proving systems.

We’re planning a full article that outlines our future plans and roadmap in detail. Stay tuned for more details!

Read more
Aztec Network
Aztec Network
4 Sep
xx min read

A New Brand for a New Era of Aztec

After eight years of solving impossible problems, the next renaissance is here. 

We’re at a major inflection point, with both our tech and our builder community going through growth spurts. The purpose of this rebrand is simple: to draw attention to our full-stack privacy-native network and to elevate the rich community of builders who are creating a thriving ecosystem around it. 

For eight years, we’ve been obsessed with solving impossible challenges. We invented new cryptography (Plonk), created an intuitive programming language (Noir), and built the first decentralized network on Ethereum where privacy is native rather than an afterthought. 

It wasn't easy. But now, we're finally bringing that powerful network to life. Testnet is live with thousands of active users and projects that were technically impossible before Aztec.

Our community evolution mirrors our technical progress. What started as an intentionally small, highly engaged group of cracked developers is now welcoming waves of developers eager to build applications that mainstream users actually want and need.

Behind the Brand: A New Mental Model

A brand is more than aesthetics—it's a mental model that makes Aztec's spirit tangible. 

Our Mission: Start a Renaissance

Renaissance means "rebirth"—and that's exactly what happens when developers gain access to privacy-first infrastructure. We're witnessing the emergence of entirely new application categories, business models, and user experiences.

The faces of this renaissance are the builders we serve: the entrepreneurs building privacy-preserving DeFi, the activists building identity systems that protect user privacy, the enterprise architects tokenizing real-world assets, and the game developers creating experiences with hidden information.

Values Driving the Network

This next renaissance isn't just about technology—it's about the ethos behind the build. These aren't just our values. They're the shared DNA of every builder pushing the boundaries of what's possible on Aztec.

Agency: It’s what everyone deserves, and very few truly have: the ability to choose and take action for ourselves. On the Aztec Network, agency is native

Genius: That rare cocktail of existential thirst, extraordinary brilliance, and mind-bending creation. It’s fire that fuels our great leaps forward. 

Integrity: It’s the respect and compassion we show each other. Our commitment to attacking the hardest problems first, and the excellence we demand of any solution. 

Obsession: That highly concentrated insanity, extreme doggedness, and insatiable devotion that makes us tick. We believe in a different future—and we can make it happen, together. 

Visualizing the Next Renaissance

Just as our technology bridges different eras of cryptographic innovation, our new visual identity draws from multiple periods of human creativity and technological advancement. 

The Wordmark: Permissionless Party 

Our new wordmark embodies the diversity of our community and the permissionless nature of our network. Each letter was custom-drawn to reflect different pivotal moments in human communication and technological progress.

  • The A channels the bold architecture of Renaissance calligraphy—when new printing technologies democratized knowledge. 
  • The Z strides confidently into the digital age with clean, screen-optimized serifs. 
  • The T reaches back to antiquity, imagined as carved stone that bridges ancient and modern. 
  • The E embraces the dot-matrix aesthetic of early computing—when machines first began talking to each other. 
  • And the C fuses Renaissance geometric principles with contemporary precision.

Together, these letters tell the story of human innovation: each era building on the last, each breakthrough enabling the next renaissance. And now, we're building the infrastructure for the one that's coming.

The Icon: Layers of the Next Renaissance

We evolved our original icon to reflect this new chapter while honoring our foundation. The layered diamond structure tells the story:

  • Innermost layer: Sensitive data at the core
  • Black privacy layer: The network's native protection
  • Open third layer: Our permissionless builder community
  • Outermost layer: Mainstream adoption and real-world transformation

The architecture echoes a central plaza—the Roman forum, the Greek agora, the English commons, the American town square—places where people gather, exchange ideas, build relationships, and shape culture. It's a fitting symbol for the infrastructure enabling the next leap in human coordination and creativity.

Imagery: Global Genius 

From the Mughal and Edo periods to the Flemish and Italian Renaissance, our brand imagery draws from different cultures and eras of extraordinary human flourishing—periods when science, commerce, culture and technology converged to create unprecedented leaps forward. These visuals reflect both the universal nature of the Renaissance and the global reach of our network. 

But we're not just celebrating the past —we're creating the future: the infrastructure for humanity's next great creative and technological awakening, powered by privacy-native blockchain technology.

You’re Invited 

Join us to ask questions, learn more and dive into the lore.

Join Our Discord Town Hall. September 4th at 8 AM PT, then every Thursday at 7 AM PT. Come hear directly from our team, ask questions, and connect with other builders who are shaping the future of privacy-first applications.

Take your stance on privacy. Visit the privacy glyph generator to create your custom profile pic and build this new world with us.

Stay Connected. Visit the new website and to stay up-to-date on all things Noir and Aztec, make sure you’re following along on X.

The next renaissance is what you build on Aztec—and we can't wait to see what you'll create.

Aztec Network
Aztec Network
22 Jul
xx min read

Introducing the Adversarial Testnet

Aztec’s Public Testnet launched in May 2025.

Since then, we’ve been obsessively working toward our ultimate goal: launching the first fully decentralized privacy-preserving layer-2 (L2) network on Ethereum. This effort has involved a team of over 70 people, including world-renowned cryptographers and builders, with extensive collaboration from the Aztec community.

To make something private is one thing, but to also make it decentralized is another. Privacy is only half of the story. Every component of the Aztec Network will be decentralized from day one because decentralization is the foundation that allows privacy to be enforced by code, not by trust. This includes sequencers, which order and validate transactions, provers, which create privacy-preserving cryptographic proofs, and settlement on Ethereum, which finalizes transactions on the secure Ethereum mainnet to ensure trust and immutability.

Strong progress is being made by the community toward full decentralization. The Aztec Network now includes nearly 1,000 sequencers in its validator set, with 15,000 nodes spread across more than 50 countries on six continents. With this globally distributed network in place, the Aztec Network is ready for users to stress test and challenge its resilience.

Introducing the Adversarial Testnet

We're now entering a new phase: the Adversarial Testnet. This stage will test the resilience of the Aztec Testnet and its decentralization mechanisms.

The Adversarial Testnet introduces two key features: slashing, which penalizes validators for malicious or negligent behavior in Proof-of-Stake (PoS) networks, and a fully decentralized governance mechanism for protocol upgrades.

This phase will also simulate network attacks to test its ability to recover independently, ensuring it could continue to operate even if the core team and servers disappeared (see more on Vitalik’s “walkaway test” here). It also opens the validator set to more people using ZKPassport, a private identity verification app, to verify their identity online.  

Slashing on the Aztec Network

The Aztec Network testnet is decentralized, run by a permissionless network of sequencers.

The slashing upgrade tests one of the most fundamental mechanisms for removing inactive or malicious sequencers from the validator set, an essential step toward strengthening decentralization.

Similar to Ethereum, on the Aztec Network, any inactive or malicious sequencers will be slashed and removed from the validator set. Sequencers will be able to slash any validator that makes no attestations for an entire epoch or proposes an invalid block.

Three slashes will result in being removed from the validator set. Sequencers may rejoin the validator set at any time after getting slashed; they just need to rejoin the queue.

Decentralized Governance

In addition to testing network resilience when validators go offline and evaluating the slashing mechanisms, the Adversarial Testnet will also assess the robustness of the network’s decentralized governance during protocol upgrades.

Adversarial Testnet introduces changes to Aztec Network’s governance system.

Sequencers now have an even more central role, as they are the sole actors permitted to deposit assets into the Governance contract.

After the upgrade is defined and the proposed contracts are deployed, sequencers will vote on and implement the upgrade independently, without any involvement from Aztec Labs and/or the Aztec Foundation.

Start Your Plan of Attack  

Starting today, you can join the Adversarial Testnet to help battle-test Aztec’s decentralization and security. Anyone can compete in six categories for a chance to win exclusive Aztec swag, be featured on the Aztec X account, and earn a DappNode. The six challenge categories include:

  • Homestaker Sentinel: Earn 1 Aztec Dappnode by maximizing attestation and proposal success rates and volumes, and actively participating in governance.
  • The Slash Priest: Awarded to the participant who most effectively detects and penalizes misbehaving validators or nodes, helping to maintain network security by identifying and “slashing” bad actors.
  • High Attester: Recognizes the participant with the highest accuracy and volume of valid attestations, ensuring reliable and secure consensus during the adversarial testnet.
  • Proposer Commander: Awarded to the participant who consistently creates the most successful and timely proposals, driving efficient consensus.
  • Meme Lord: Celebrates the creator of the most creative and viral meme that captures the spirit of the adversarial testnet.
  • Content Chronicler: Honors the participant who produces the most engaging and insightful content documenting the adversarial testnet experience.

Performance will be tracked using Dashtec, a community-built dashboard that pulls data from publicly available sources. Dashtec displays a weighted score of your validator performance, which may be used to evaluate challenges and award prizes.

The dashboard offers detailed insights into sequencer performance through a stunning UI, allowing users to see exactly who is in the current validator set and providing a block-by-block view of every action taken by sequencers.

To join the validator set and start tracking your performance, click here. Join us on Thursday, July 31, 2025, at 4 pm CET on Discord for a Town Hall to hear more about the challenges and prizes. Who knows, we might even drop some alpha.

To stay up-to-date on all things Noir and Aztec, make sure you’re following along on X.

Noir
Noir
26 Jun
xx min read

ZKPassport Case Study: A Look into Online Identity Verification

Preventing sybil attacks and malicious actors is one of the fundamental challenges of Web3 – it’s why we have proof-of-work and proof-of-stake networks. But Sybil attacks go a step further for many projects, with bots and advanced AI agents flooding Discord servers, sending thousands of transactions that clog networks, and botting your Typeforms. Determining who is a real human online and on-chain is becoming increasingly difficult, and the consequences of this are making it difficult for projects to interact with real users.

When the Aztec Testnet launched last month, we wrote about the challenges of running a proof-of-stake testnet in an environment where bots are everywhere. The Aztec Testnet is a decentralized network, and in order to give good actors a chance, a daily quota was implemented to limit the number of new sequencers that could join the validator set per day to start proposing blocks. Using this system, good actors who were already in the set could vote to kick out bad actors, with a daily limit of 5 new sequencers able to join the set each day. However, the daily quota quickly got bottlenecked, and it became nearly impossible for real humans who are operating nodes in good faith to join the Aztec Testnet.

In this case study, we break down Sybil attacks, explore different ways the ecosystem currently uses to prevent them, and dive into how we’re leveraging ZKPassport to prevent Sybil attacks on the Aztec Testnet.

Preventing Sybil Attacks

With the massive repercussions that stem from privacy leaks (see the recent Coinbase incident), any solution to prevent Sybil attacks and prove humanity must not compromise on user privacy and should be grounded in the principles of privacy by design and data minimization. Additionally, given that decentralization underpins the entire purpose of Web3 (and the Aztec Network), joining the network should remain permissionless.

Our goal was to find a solution that allows users to permissionlessly prove their humanity without compromising their privacy. If such a technology exists (spoiler alert: it does), we believe that this has the potential to solve one of the biggest problems faced by our industry: Sybil attacks. Some of the ways that projects currently try to prevent Sybil attacks or prove [humanity] include:

  • “Know Your Customer” (KYC): A process in which users upload a picture or scan of their government ID, which is checked and then retained (indefinitely) by the project, and any “bad actors” are rejected.
    • Pros: High likelihood they are human, although AI has begun to introduce a new set of challenges.
    • Cons: User data is retained and viewable by a centralized entity, which could lead to compromised data and privacy leaks, ultimately impacting the security of the individuals. Also, KYC processes in the age of AI means it is easy to fake a passport as only an image is used to verify and not any biometric data held on the passport itself. Existing KYC practices are outdated, not secure and prone to data leaks increasing personal security risk for the users.
  • On-chain activity and account linking (i.e, Gitcoin passport)
    • Pros: No personal identity data shared (name, location, etc.)
    • Cons: Onchain activity and social accounts are not Sybil-resistant.
  • Small payment to participate
    • Pros: Impractical/financially consequential for bots to join. Effective for centralized infra providers as it can cover the cost they incur from Sybil attacks.
    • Cons: Requires users to pay out of pocket to test the network, and doesn’t prevent bots from participating, and is ineffective for decentralized infra as it is difficult to spread incurred costs to all affected operators.
  • zkEmail
    • Pros: The user shares no private information.
    • Cons: Users cannot be blocked by jurisdiction, for example, it would be impossible to carry out sanctions checks, if required.
  • ZKPassport, a private identity verification app.
    • Pros: User verifies they possess a valid ID without sharing private information. No information is retained therefore no leaks of data can occur impacting the personal security of the user.
    • Cons: Users must have a valid passport or a compatible government ID, in each case, that is not expired.

Both zkEmail and ZKPassport are powered by Noir, the universal language of zk, and are great solutions for preventing Sybil attacks.

With zkEmail, users can do things like prove that they received a confirmation email from a centralized exchange showing that they successfully passed KYC, all without showing any of the email contents or personal information. While this offers a good solution for this use case, we also wanted the functionality of enabling the network to block certain jurisdictions (if needed), without the network knowing where the user is from. This also enables users to directly interface with the network rather than through a third-party email confirmation.

Given this context, ZKPassport was, and is, the perfect fit.

About ZKPassport

For the Aztec Testnet, we’ve integrated ZKPassport to enable node operators to prove they are human and participate in the network. This integration allows the network to dramatically increase the number of sequencers that can be added each day, which is a huge step forward in decentralizing the network with real operators.

ZKPassport allows users to share only the details about themselves that they choose by scanning a passport or government ID. This is achieved using zero-knowledge proofs (ZKPs) that are generated locally on the user’s phone. Implementing client-side zk-proofs in this way enables novel use-cases like age verification, where someone can prove their age without actually sharing how old they are (see the recent report on How to Enable Age Verification on the Internet Today Using Zero-Knowledge Proofs).

As of this week, the ZKPassport app is live and available to download on Google Play and the Apple App Store.

How ZKPassport works

Most countries today issue biometric passports or national IDs containing NFC chips (over 120 countries are currently supported by ZKPassport). These chips contain information on the full name, date of birth, nationality, and even digital photographs of the passport or ID holder. They can also contain biometric data such as fingerprints and iris scans.

By scanning the NFC chip located in their ID document with a smartphone, users generate proof based on a specific request from an app. For example, some apps might require only the user’s age or nationality. In the case of Aztec, no information is needed about the user other than that they do indeed hold a valid passport or ID.

Client-side proving

Once the user installs the ZKPassport app and scans their passport, the proof of identity is generated on the user's smartphone (client-side).

All the private data read from the NFC chip in the passport or ID is processed client-side and never leaves the smartphone (aka: only the user is aware of their data). Only this proof is sent to an app that has requested some information. The app can then verify the validity of the user’s age or nationality, all without actually seeing anything about the user other than what the user has authorized the app to see. In the case of age verification, the user may want to prove that they are over 18, so they’ll create a proof of this on their phone, and the requesting app is able to verify this information without knowing anything else about them.

For the Aztec Testnet, the network only needs to know that the user holds a valid passport, so no information is shared by the user other than “yes, I hold a valid passport or ID.”

Getting started with ZKPassport on Aztec Testnet

This is a nascent and evolving technology, and various phone models, operating systems, and countries are still being optimized for. To ensure this works seamlessly, we’ll be selecting the first cohort of people who have already been running active validators on a rolling basis to help test ZKPassport and provide early feedback.

If someone successfully verifies that they are a valid passport holder, they will be added to a queue to enter the validator set. Once they are in line, they are guaranteed entry. The queue will enable an estimated additional 10% of the current set to be allowed in each day. For example, if 800 sequencers are currently in the set, 80 new sequencers will be allowed to join that day.

This allows existing operators to maintain control of the network in the event that bad actors enter, while dramatically increasing the number of new validators added compared to the current number.

Humanizing Web3  

With ZKPassport now live, the Aztec Testnet is better equipped to distinguish real users from bots, without compromising on privacy or decentralization.

This integration is already enabling more verified human node operators to join the validator set, and the network is ready to welcome more. By leveraging ZKPs and client-side proving, ZKPassport ensures that humanity checks are both secure and permissionless, bringing us closer to a decentralized future that doesn’t rely on trust in centralized authorities.

This is exciting not just for Aztec but for the broader ecosystem. As the network continues to grow and develop, participation must remain open to anyone acting in good faith, regardless of geography or background, while keeping out bots and other malicious actors. ZKPassport makes this possible.

We’re excited to see the community expand, powered by real people helping to build a more private, inclusive, and human Web3.

Stay up-to-date on Noir and Aztec by following Noir and Aztec on X.

Noir
Noir
4 Jun
xx min read

StealthNote: The Decentralized, Private Glassdoor of Web3

Imagine an app that allows users to post private messages while proving they belong to an organization, without revealing their identity. Thanks to zero-knowledge proofs (ZKPs), it's now possible to protect the user’s identity through secure messaging, confidential voting, secured polling, and more. This development in privacy-preserving authentication creates powerful new ways for teams and individuals to communicate on the Internet while keeping aspects of their identity private.

Introducing Private Posting

Compared to Glassdoor, StealthNote is an app that allows users to post messages privately while proving they belong to a specific organization. Built with Noir, an open-source programming language for writing ZK programs, StealthNote utilizes ZKPs to prove ownership of a company email address, without revealing the particular email or other personal information.

Privately Sign In With Google

To prove the particular domain email ownership, the app asks users to sign in using Google. This utilizes Google’s ‘Sign in with Google’ OAuth authorization. OAuth is usually used by external applications for user authorization and returns verified users’ data, such as name, email, and the organization’s domain.

However, using ‘Sign in with Google’ in a traditional way reveals all of the information about the person’s identity to the app. Furthermore, for an app where you want to allow the public to verify the information about a user, all of this information would be made public to the world. That’s where StealthNote steps in, enabling part of the returned user data to stay private (e.g. name and email) and part of it to be publicly verifiable (e.g. company domain).

How StealthNote Works

Understanding JSON Web Tokens (JWTs)

When you "Sign in with Google" in a third-party app, Google returns some information about the user as a JSON Web Token (JWT) – a standard for sending information around the web.

JWTs are just formatted strings that contain a header (some info about the token), a payload (data about the user), and a signature to ensure the integrity and authenticity of the token:

Anyone can verify the authenticity of the above data by verifying that the JWT was signed by Google using their public key.

Adding Private Messages

In the case of StealthNote, we want to authorize the user and prove that they sent a particular message. To make this possible, custom information is added to the JWT token payload – a hashed message. With this additional field, the JWT becomes a digitally signed proof that a particular user sent that exact message.

Protecting the Sender’s Privacy

You can share the message and the JWT with someone and convince them that the message was sent by someone in the company. However, this would require sharing the whole JWT, which includes your name and email, exposing who the sender is. So, how does StealthNote protect this information?

They used a ZK-programming language, Noir, with the following goals in mind:

  • Verify the signature of the JWT using Google's public key
  • Extract the hashed message from the payload
  • Extract the email domain from the payload

The payload and the signature are kept private, meaning they stay on the user’s device and never need to be revealed, while the hashed message, the domain, and the JWT public key are public. The ZKP is generated in the browser, and no private data ever leaves the user's device.

Noir: What is Happening Under the Hood

By executing the program with Noir and generating a proof, the prover (the user who is posting a message) proves that they can generate a JWT signed by some particular public key, and it contains an email field in the payload with the given domain.

When the message is sent to the StealthNote server, the server verifies that the proof is valid as per the StealthNote circuit and validates that the public key in the proof is the same as Google's public key.

Once both checks pass, the server inserts the proof into the database, which then appears in the feed visible for other users. Other users can also verify the proof in the browser. The role of the server is to act as a data storage layer.

Stay up-to-date on Noir and Aztec by following Noir and Aztec on X.