Aztec Network
16 May
## min read

An introduction to AZTEC

This is the first in a series of articles designed to help developers understand the core concepts of AZTEC.

Share
Written by
Joe Andrews
Edited by

An Introduction to AZTEC

This article is in English, you can read a Mandarin(中文) translation here.

This is the first in a series of articles designed to help developers understand the core concepts of AZTEC and walk through the steps required to build a confidential loan dApp using AZTEC. It is assumed the reader has a good knowledge of web development and a working knowledge of solidity.

This series is split into 4 parts:

  • Part 1 — An introduction to AZTEC
  • Part 2 — Deploying AZTEC on Ganache
  • Part 3 — Constructing Proofs, Signing Flows and Key Management.
  • Part 4 — Creating, Settling, & Streaming Confidential Assets

{{blog_divider}}

Before explaining what AZTEC is and how it works, it is important to first understand why it exists.

One of the much heralded uses of a blockchain is encompassed by the phrase “programmable money” — a smart contract controlling the movement of capital inside a financial application. e.g. A bond transfer will only process if the buyers total position is less than a 4% regulatory limit. If this can be achieved, large swathes of the financial system can be rebuilt on top of public blockchains and in the process remove intermediaries, end reconciliation and delete counter-party risk. Using the Ethereum blockchain today, it is straightforward to create “programmable money”. However there is a problem — privacy.

The inputs and outputs of any blockchain transaction are publicly broadcast inside the transaction payload.

In the bond transfer example, the notional being traded and a traders current position would have to be broadcast, in order for a smart contract to validate the trade complies with the the 4% regulatory limit. This is a non-starter for real world financial applications in where transaction privacy is a pre-requisite.

The AZTEC protocol was created to enable privacy on public blockchains. It enables logical checks to be performed on encrypted values without the underlying values being revealed to the blockchain. The inputs and outputs of a transaction are encrypted using a series of zero-knowledge proofs and homomorphic encryption, yet the blockchain can still test the logical correctness of these encrypted statements.

{{blog_divider}}

Under the hood

The validation of traditional Zero-knowledge systems on Ethereum is unworkable. This is due to a combination of on-chain verification gas costs, slow proof construction, and a lack of interoperability between assets. The lack of interoperability and inability for proof construction to run on a clients browser make these systems unsuitable for use in real world financial applications. One of the largest costs inside a Zero-knowledge system is the range proof. A range proof allows the prover to prove to a verifier, that a number is within a specific range. This is critically important when dealing with addition of elliptic curve points. On an elliptic curve, a negative number is in fact a very large positive number and a range proof is used to ensure that any point is within a usable range and to prevent double spend attacks by wrapping around the modulo. AZTEC’s range proof utilises a trusted setup to drastically reduce the cost of this check.

Once an encrypted number is proven to be inside the usable range the additive properties of an elliptic curve allow logical checks to be performed on it. This concept known as homomorphic encryption allows logical checks to be carried out on encrypted numbers as if they had not been encrypted. i.e the same checks can be performed as in a public transaction but without ever revealing the underlying values of the encrypted numbers.

These two cryptographic methods are combined into a set of sigma protocols that allow specific logical statements to be validated on chain. If you would like to find out more about the cryptography underpinning the protocol, please read the white-paper.

{{blog_divider}}

AZTEC’s Mental Model

AZTEC follows a UTXO model similar to that of Bitcoin. The core of any AZTEC transaction is a Note. The state of notes are managed by a Note Registry for any given asset.

The user’s balance of any AZTEC asset is made up of the sum of all of the valid notes their address owns in a given Note Registry.

AZTEC's UTXO model

Public blockchains offer two main benefits, an independent economic guarantee around the correctness of state and interoperability of capital. (The capital received as an interest payment for a loan can also be used to settle a trade for a different asset). Most Zero Knowledge systems lack this interoperability. They create siloed pools of private capital. AZTEC is designed to solve this. It allows interoperability between dApps interacting in zero knowledge.

To achieve this interoperability, all AZTEC assets share a common trusted setup and their state is managed by a single smart contract, the AZTEC Cryptography Engine or ACE. ACE has two primary functions; first to delegate the validation of proofs to specific validation contracts and secondly to process state update instructions inside note registries that result from the successful validated proofs.

AZTEC architecture

{{blog_divider}}

A set of building blocks to enable privacy

The AZTEC protocol is designed to offer dApp builders a set of modular building blocks, each enabling a specific piece of functionality. A developer can compose together these building blocks to build a private dApp, without the need for a cryptographer. Under the hood these toolkits are Sigma protocols that prove a relationship between the supplied input and output notes. Currently AZTEC supports 7 of these toolkits:

Join Split (Transfer)
The Join Split proof allows a set of input notes to be joined or split into a set of output notes. Usually this is used to combine note values into a larger note, or split a note into multiple notes with different owners. This proof ensures that the sum of the input notes is equal to the sum of the output notes.

There are also two variants of the Join Split transactions that are used to deal with public ERC20 values. One in which a public ERC20 value is converted into an AZTEC note and it’s reciprocal, where an AZTEC note is converted into a public ERC20 value.

Bilateral Swap (Trade)
The bilateral swap proof allows an atomic swap of two notes to take place. This is useful for trading two assets e.g fiat and a loan/bond/security. A validated proof, proves that the makers bid note is equal to the takers ask note and the makers ask note is equal to the takers bid note.

Dividend Proof
This proof allows the prover to prove that the input note is equal to an output note multiplied by a ratio. This is useful for paying interest from an asset.

Mint
The mint proof allows the supply of AZTEC notes to be increased by a trusted party. e.g a stable coin mints an AZTEC note equal to the value of a bank transfer it receives.

Burn
The burn proof allows the supply of AZTEC notes to be decrease by a trusted party. e.g a stable coin burns an AZTEC note of equal value of the bank transfer it sends to the note owner.

Private Range
This is used to prove that an AZTEC note is greater than another AZTEC note or vice versa. This is useful for proving that ownership of an asset post trade is below a regulatory maximum. It can also be used to build identity and group membership schemes.

Public Range
Similar to the private range proof. This is used to prove that an AZTEC note is greater than a public integer or vice versa. This is useful for proving that ownership of an asset post trade is below a regulatory maximum.

Privacy, Anonymity and Confidentiality
These terms are often used when discussing zero-knowledge systems. It is important to define the meaning of each and address how AZTEC handles them.

Privacy: all aspects of a transaction remain hidden from the public or third parties.

Confidentiality: the inputs and outputs of a transaction are hidden from the public but the transaction parties remain public.

Anonymity: the inputs and outputs of a transaction are public but the transaction graph is obscured from one transaction to the next, preventing the identification of the transaction parties.

AZTEC enables confidential transactions out of the box. The inputs and outputs of any transactions are represented as encrypted numbers and the value hidden from public view.

Using normal Ethereum addresses the transaction graph of AZTEC is not anonymous. However anonymous transactions are possible. The protocol is forward compatible stealth addresses and as AZTEC does not mandate the transaction sender to be a party in the transaction, the transaction graph can be hidden. Combining stealth addresses and a trusted party to relay transactions achieves full anonymity. Using a trusted third party hides the payment of gas and provides full anonymity. Future updates to the protocol will allow the relay of transactions whilst obscuring the payment of gas in a decentralised manor. At that point fully private transactions will be possible.

{{blog_divider}}

Creating Confidential Assets

EIP1724 aims to standardise the interface for interacting with confidential assets that conform to a UTXO based models. AZTEC has reference implementations of EIP1724 for the supported asset types in the @aztec/protocol NPM package.

The EIP 1724 ZkAsset Standard

Let’s look at an example:

Imagine the dApp in question needs to perform a logical check to ensure that a traders post trade asset balance is less than a regulatory maximum.

In a normal dApp, this check is simple to perform. The transaction inputs would contain the public variables tradeNotional. The contract could then perform a simple check ensuring the new assetBalance[buyer] is below the regulatoryMax .

if(regulatoryMax > tradeNotional + assetBalance[buyer]) {
// the trade can proceed
}

In a private AZTEC dApp, the same logical check can be performed using one of the AZTEC proofs. The mental model is slightly different as all of the variables are stored as encrypted AZTEC notes, then a proof is constructed, which if validated by ACE, ensures the desired logical statement is correct.

In this example the Private Range Proof is used.

const {
  proofData,
} = await aztec.proof.privateRange.encodePrivateRangeTransaction({
   originalNote: regulatoryMax,
   comparisonNote: postTradeUserBalance,
   senderAddress: accounts[0],
 });

This proof proves that the comparisonNote is less than the originalNote . If the values are swapped it would prove the opposite. Once the proof is constructed it can be relayed to ACE for validation.

(bytes memory _proofOutputs) = ACE.validateProof(
                          PRIVATE_RANGE_PROOF,
                          address(this),
                          _proofData
                        );
// if the above statement succeeds we know that the users post trade balance is below the regulatory minimum.

AZTEC is designed to allow the combination of these logical checks to build the complex flows required by financial dApps. The later parts of this series will cover detailed examples of these complex flows.

That’s it for Part 1, you can read Part 2 — Deploying AZTEC to Ganache here.

Thanks for reading!

Read more
Aztec Network
Aztec Network
4 Sep
xx min read

A New Brand for a New Era of Aztec

After eight years of solving impossible problems, the next renaissance is here. 

We’re at a major inflection point, with both our tech and our builder community going through growth spurts. The purpose of this rebrand is simple: to draw attention to our full-stack privacy-native network and to elevate the rich community of builders who are creating a thriving ecosystem around it. 

For eight years, we’ve been obsessed with solving impossible challenges. We invented new cryptography (Plonk), created an intuitive programming language (Noir), and built the first decentralized network on Ethereum where privacy is native rather than an afterthought. 

It wasn't easy. But now, we're finally bringing that powerful network to life. Testnet is live with thousands of active users and projects that were technically impossible before Aztec.

Our community evolution mirrors our technical progress. What started as an intentionally small, highly engaged group of cracked developers is now welcoming waves of developers eager to build applications that mainstream users actually want and need.

Behind the Brand: A New Mental Model

A brand is more than aesthetics—it's a mental model that makes Aztec's spirit tangible. 

Our Mission: Start a Renaissance

Renaissance means "rebirth"—and that's exactly what happens when developers gain access to privacy-first infrastructure. We're witnessing the emergence of entirely new application categories, business models, and user experiences.

The faces of this renaissance are the builders we serve: the entrepreneurs building privacy-preserving DeFi, the activists building identity systems that protect user privacy, the enterprise architects tokenizing real-world assets, and the game developers creating experiences with hidden information.

Values Driving the Network

This next renaissance isn't just about technology—it's about the ethos behind the build. These aren't just our values. They're the shared DNA of every builder pushing the boundaries of what's possible on Aztec.

Agency: It’s what everyone deserves, and very few truly have: the ability to choose and take action for ourselves. On the Aztec Network, agency is native

Genius: That rare cocktail of existential thirst, extraordinary brilliance, and mind-bending creation. It’s fire that fuels our great leaps forward. 

Integrity: It’s the respect and compassion we show each other. Our commitment to attacking the hardest problems first, and the excellence we demand of any solution. 

Obsession: That highly concentrated insanity, extreme doggedness, and insatiable devotion that makes us tick. We believe in a different future—and we can make it happen, together. 

Visualizing the Next Renaissance

Just as our technology bridges different eras of cryptographic innovation, our new visual identity draws from multiple periods of human creativity and technological advancement. 

The Wordmark: Permissionless Party 

Our new wordmark embodies the diversity of our community and the permissionless nature of our network. Each letter was custom-drawn to reflect different pivotal moments in human communication and technological progress.

  • The A channels the bold architecture of Renaissance calligraphy—when new printing technologies democratized knowledge. 
  • The Z strides confidently into the digital age with clean, screen-optimized serifs. 
  • The T reaches back to antiquity, imagined as carved stone that bridges ancient and modern. 
  • The E embraces the dot-matrix aesthetic of early computing—when machines first began talking to each other. 
  • And the C fuses Renaissance geometric principles with contemporary precision.

Together, these letters tell the story of human innovation: each era building on the last, each breakthrough enabling the next renaissance. And now, we're building the infrastructure for the one that's coming.

The Icon: Layers of the Next Renaissance

We evolved our original icon to reflect this new chapter while honoring our foundation. The layered diamond structure tells the story:

  • Innermost layer: Sensitive data at the core
  • Black privacy layer: The network's native protection
  • Open third layer: Our permissionless builder community
  • Outermost layer: Mainstream adoption and real-world transformation

The architecture echoes a central plaza—the Roman forum, the Greek agora, the English commons, the American town square—places where people gather, exchange ideas, build relationships, and shape culture. It's a fitting symbol for the infrastructure enabling the next leap in human coordination and creativity.

Imagery: Global Genius 

From the Mughal and Edo periods to the Flemish and Italian Renaissance, our brand imagery draws from different cultures and eras of extraordinary human flourishing—periods when science, commerce, culture and technology converged to create unprecedented leaps forward. These visuals reflect both the universal nature of the Renaissance and the global reach of our network. 

But we're not just celebrating the past —we're creating the future: the infrastructure for humanity's next great creative and technological awakening, powered by privacy-native blockchain technology.

You’re Invited 

Join us to ask questions, learn more and dive into the lore.

Join Our Discord Town Hall. September 4th at 8 AM PT, then every Thursday at 7 AM PT. Come hear directly from our team, ask questions, and connect with other builders who are shaping the future of privacy-first applications.

Take your stance on privacy. Visit the privacy glyph generator to create your custom profile pic and build this new world with us.

Stay Connected. Visit the new website and to stay up-to-date on all things Noir and Aztec, make sure you’re following along on X.

The next renaissance is what you build on Aztec—and we can't wait to see what you'll create.

Aztec Network
Aztec Network
22 Jul
xx min read

Introducing the Adversarial Testnet

Aztec’s Public Testnet launched in May 2025.

Since then, we’ve been obsessively working toward our ultimate goal: launching the first fully decentralized privacy-preserving layer-2 (L2) network on Ethereum. This effort has involved a team of over 70 people, including world-renowned cryptographers and builders, with extensive collaboration from the Aztec community.

To make something private is one thing, but to also make it decentralized is another. Privacy is only half of the story. Every component of the Aztec Network will be decentralized from day one because decentralization is the foundation that allows privacy to be enforced by code, not by trust. This includes sequencers, which order and validate transactions, provers, which create privacy-preserving cryptographic proofs, and settlement on Ethereum, which finalizes transactions on the secure Ethereum mainnet to ensure trust and immutability.

Strong progress is being made by the community toward full decentralization. The Aztec Network now includes nearly 1,000 sequencers in its validator set, with 15,000 nodes spread across more than 50 countries on six continents. With this globally distributed network in place, the Aztec Network is ready for users to stress test and challenge its resilience.

Introducing the Adversarial Testnet

We're now entering a new phase: the Adversarial Testnet. This stage will test the resilience of the Aztec Testnet and its decentralization mechanisms.

The Adversarial Testnet introduces two key features: slashing, which penalizes validators for malicious or negligent behavior in Proof-of-Stake (PoS) networks, and a fully decentralized governance mechanism for protocol upgrades.

This phase will also simulate network attacks to test its ability to recover independently, ensuring it could continue to operate even if the core team and servers disappeared (see more on Vitalik’s “walkaway test” here). It also opens the validator set to more people using ZKPassport, a private identity verification app, to verify their identity online.  

Slashing on the Aztec Network

The Aztec Network testnet is decentralized, run by a permissionless network of sequencers.

The slashing upgrade tests one of the most fundamental mechanisms for removing inactive or malicious sequencers from the validator set, an essential step toward strengthening decentralization.

Similar to Ethereum, on the Aztec Network, any inactive or malicious sequencers will be slashed and removed from the validator set. Sequencers will be able to slash any validator that makes no attestations for an entire epoch or proposes an invalid block.

Three slashes will result in being removed from the validator set. Sequencers may rejoin the validator set at any time after getting slashed; they just need to rejoin the queue.

Decentralized Governance

In addition to testing network resilience when validators go offline and evaluating the slashing mechanisms, the Adversarial Testnet will also assess the robustness of the network’s decentralized governance during protocol upgrades.

Adversarial Testnet introduces changes to Aztec Network’s governance system.

Sequencers now have an even more central role, as they are the sole actors permitted to deposit assets into the Governance contract.

After the upgrade is defined and the proposed contracts are deployed, sequencers will vote on and implement the upgrade independently, without any involvement from Aztec Labs and/or the Aztec Foundation.

Start Your Plan of Attack  

Starting today, you can join the Adversarial Testnet to help battle-test Aztec’s decentralization and security. Anyone can compete in six categories for a chance to win exclusive Aztec swag, be featured on the Aztec X account, and earn a DappNode. The six challenge categories include:

  • Homestaker Sentinel: Earn 1 Aztec Dappnode by maximizing attestation and proposal success rates and volumes, and actively participating in governance.
  • The Slash Priest: Awarded to the participant who most effectively detects and penalizes misbehaving validators or nodes, helping to maintain network security by identifying and “slashing” bad actors.
  • High Attester: Recognizes the participant with the highest accuracy and volume of valid attestations, ensuring reliable and secure consensus during the adversarial testnet.
  • Proposer Commander: Awarded to the participant who consistently creates the most successful and timely proposals, driving efficient consensus.
  • Meme Lord: Celebrates the creator of the most creative and viral meme that captures the spirit of the adversarial testnet.
  • Content Chronicler: Honors the participant who produces the most engaging and insightful content documenting the adversarial testnet experience.

Performance will be tracked using Dashtec, a community-built dashboard that pulls data from publicly available sources. Dashtec displays a weighted score of your validator performance, which may be used to evaluate challenges and award prizes.

The dashboard offers detailed insights into sequencer performance through a stunning UI, allowing users to see exactly who is in the current validator set and providing a block-by-block view of every action taken by sequencers.

To join the validator set and start tracking your performance, click here. Join us on Thursday, July 31, 2025, at 4 pm CET on Discord for a Town Hall to hear more about the challenges and prizes. Who knows, we might even drop some alpha.

To stay up-to-date on all things Noir and Aztec, make sure you’re following along on X.

Noir
Noir
26 Jun
xx min read

ZKPassport Case Study: A Look into Online Identity Verification

Preventing sybil attacks and malicious actors is one of the fundamental challenges of Web3 – it’s why we have proof-of-work and proof-of-stake networks. But Sybil attacks go a step further for many projects, with bots and advanced AI agents flooding Discord servers, sending thousands of transactions that clog networks, and botting your Typeforms. Determining who is a real human online and on-chain is becoming increasingly difficult, and the consequences of this are making it difficult for projects to interact with real users.

When the Aztec Testnet launched last month, we wrote about the challenges of running a proof-of-stake testnet in an environment where bots are everywhere. The Aztec Testnet is a decentralized network, and in order to give good actors a chance, a daily quota was implemented to limit the number of new sequencers that could join the validator set per day to start proposing blocks. Using this system, good actors who were already in the set could vote to kick out bad actors, with a daily limit of 5 new sequencers able to join the set each day. However, the daily quota quickly got bottlenecked, and it became nearly impossible for real humans who are operating nodes in good faith to join the Aztec Testnet.

In this case study, we break down Sybil attacks, explore different ways the ecosystem currently uses to prevent them, and dive into how we’re leveraging ZKPassport to prevent Sybil attacks on the Aztec Testnet.

Preventing Sybil Attacks

With the massive repercussions that stem from privacy leaks (see the recent Coinbase incident), any solution to prevent Sybil attacks and prove humanity must not compromise on user privacy and should be grounded in the principles of privacy by design and data minimization. Additionally, given that decentralization underpins the entire purpose of Web3 (and the Aztec Network), joining the network should remain permissionless.

Our goal was to find a solution that allows users to permissionlessly prove their humanity without compromising their privacy. If such a technology exists (spoiler alert: it does), we believe that this has the potential to solve one of the biggest problems faced by our industry: Sybil attacks. Some of the ways that projects currently try to prevent Sybil attacks or prove [humanity] include:

  • “Know Your Customer” (KYC): A process in which users upload a picture or scan of their government ID, which is checked and then retained (indefinitely) by the project, and any “bad actors” are rejected.
    • Pros: High likelihood they are human, although AI has begun to introduce a new set of challenges.
    • Cons: User data is retained and viewable by a centralized entity, which could lead to compromised data and privacy leaks, ultimately impacting the security of the individuals. Also, KYC processes in the age of AI means it is easy to fake a passport as only an image is used to verify and not any biometric data held on the passport itself. Existing KYC practices are outdated, not secure and prone to data leaks increasing personal security risk for the users.
  • On-chain activity and account linking (i.e, Gitcoin passport)
    • Pros: No personal identity data shared (name, location, etc.)
    • Cons: Onchain activity and social accounts are not Sybil-resistant.
  • Small payment to participate
    • Pros: Impractical/financially consequential for bots to join. Effective for centralized infra providers as it can cover the cost they incur from Sybil attacks.
    • Cons: Requires users to pay out of pocket to test the network, and doesn’t prevent bots from participating, and is ineffective for decentralized infra as it is difficult to spread incurred costs to all affected operators.
  • zkEmail
    • Pros: The user shares no private information.
    • Cons: Users cannot be blocked by jurisdiction, for example, it would be impossible to carry out sanctions checks, if required.
  • ZKPassport, a private identity verification app.
    • Pros: User verifies they possess a valid ID without sharing private information. No information is retained therefore no leaks of data can occur impacting the personal security of the user.
    • Cons: Users must have a valid passport or a compatible government ID, in each case, that is not expired.

Both zkEmail and ZKPassport are powered by Noir, the universal language of zk, and are great solutions for preventing Sybil attacks.

With zkEmail, users can do things like prove that they received a confirmation email from a centralized exchange showing that they successfully passed KYC, all without showing any of the email contents or personal information. While this offers a good solution for this use case, we also wanted the functionality of enabling the network to block certain jurisdictions (if needed), without the network knowing where the user is from. This also enables users to directly interface with the network rather than through a third-party email confirmation.

Given this context, ZKPassport was, and is, the perfect fit.

About ZKPassport

For the Aztec Testnet, we’ve integrated ZKPassport to enable node operators to prove they are human and participate in the network. This integration allows the network to dramatically increase the number of sequencers that can be added each day, which is a huge step forward in decentralizing the network with real operators.

ZKPassport allows users to share only the details about themselves that they choose by scanning a passport or government ID. This is achieved using zero-knowledge proofs (ZKPs) that are generated locally on the user’s phone. Implementing client-side zk-proofs in this way enables novel use-cases like age verification, where someone can prove their age without actually sharing how old they are (see the recent report on How to Enable Age Verification on the Internet Today Using Zero-Knowledge Proofs).

As of this week, the ZKPassport app is live and available to download on Google Play and the Apple App Store.

How ZKPassport works

Most countries today issue biometric passports or national IDs containing NFC chips (over 120 countries are currently supported by ZKPassport). These chips contain information on the full name, date of birth, nationality, and even digital photographs of the passport or ID holder. They can also contain biometric data such as fingerprints and iris scans.

By scanning the NFC chip located in their ID document with a smartphone, users generate proof based on a specific request from an app. For example, some apps might require only the user’s age or nationality. In the case of Aztec, no information is needed about the user other than that they do indeed hold a valid passport or ID.

Client-side proving

Once the user installs the ZKPassport app and scans their passport, the proof of identity is generated on the user's smartphone (client-side).

All the private data read from the NFC chip in the passport or ID is processed client-side and never leaves the smartphone (aka: only the user is aware of their data). Only this proof is sent to an app that has requested some information. The app can then verify the validity of the user’s age or nationality, all without actually seeing anything about the user other than what the user has authorized the app to see. In the case of age verification, the user may want to prove that they are over 18, so they’ll create a proof of this on their phone, and the requesting app is able to verify this information without knowing anything else about them.

For the Aztec Testnet, the network only needs to know that the user holds a valid passport, so no information is shared by the user other than “yes, I hold a valid passport or ID.”

Getting started with ZKPassport on Aztec Testnet

This is a nascent and evolving technology, and various phone models, operating systems, and countries are still being optimized for. To ensure this works seamlessly, we’ll be selecting the first cohort of people who have already been running active validators on a rolling basis to help test ZKPassport and provide early feedback.

If someone successfully verifies that they are a valid passport holder, they will be added to a queue to enter the validator set. Once they are in line, they are guaranteed entry. The queue will enable an estimated additional 10% of the current set to be allowed in each day. For example, if 800 sequencers are currently in the set, 80 new sequencers will be allowed to join that day.

This allows existing operators to maintain control of the network in the event that bad actors enter, while dramatically increasing the number of new validators added compared to the current number.

Humanizing Web3  

With ZKPassport now live, the Aztec Testnet is better equipped to distinguish real users from bots, without compromising on privacy or decentralization.

This integration is already enabling more verified human node operators to join the validator set, and the network is ready to welcome more. By leveraging ZKPs and client-side proving, ZKPassport ensures that humanity checks are both secure and permissionless, bringing us closer to a decentralized future that doesn’t rely on trust in centralized authorities.

This is exciting not just for Aztec but for the broader ecosystem. As the network continues to grow and develop, participation must remain open to anyone acting in good faith, regardless of geography or background, while keeping out bots and other malicious actors. ZKPassport makes this possible.

We’re excited to see the community expand, powered by real people helping to build a more private, inclusive, and human Web3.

Stay up-to-date on Noir and Aztec by following Noir and Aztec on X.

Noir
Noir
4 Jun
xx min read

StealthNote: The Decentralized, Private Glassdoor of Web3

Imagine an app that allows users to post private messages while proving they belong to an organization, without revealing their identity. Thanks to zero-knowledge proofs (ZKPs), it's now possible to protect the user’s identity through secure messaging, confidential voting, secured polling, and more. This development in privacy-preserving authentication creates powerful new ways for teams and individuals to communicate on the Internet while keeping aspects of their identity private.

Introducing Private Posting

Compared to Glassdoor, StealthNote is an app that allows users to post messages privately while proving they belong to a specific organization. Built with Noir, an open-source programming language for writing ZK programs, StealthNote utilizes ZKPs to prove ownership of a company email address, without revealing the particular email or other personal information.

Privately Sign In With Google

To prove the particular domain email ownership, the app asks users to sign in using Google. This utilizes Google’s ‘Sign in with Google’ OAuth authorization. OAuth is usually used by external applications for user authorization and returns verified users’ data, such as name, email, and the organization’s domain.

However, using ‘Sign in with Google’ in a traditional way reveals all of the information about the person’s identity to the app. Furthermore, for an app where you want to allow the public to verify the information about a user, all of this information would be made public to the world. That’s where StealthNote steps in, enabling part of the returned user data to stay private (e.g. name and email) and part of it to be publicly verifiable (e.g. company domain).

How StealthNote Works

Understanding JSON Web Tokens (JWTs)

When you "Sign in with Google" in a third-party app, Google returns some information about the user as a JSON Web Token (JWT) – a standard for sending information around the web.

JWTs are just formatted strings that contain a header (some info about the token), a payload (data about the user), and a signature to ensure the integrity and authenticity of the token:

Anyone can verify the authenticity of the above data by verifying that the JWT was signed by Google using their public key.

Adding Private Messages

In the case of StealthNote, we want to authorize the user and prove that they sent a particular message. To make this possible, custom information is added to the JWT token payload – a hashed message. With this additional field, the JWT becomes a digitally signed proof that a particular user sent that exact message.

Protecting the Sender’s Privacy

You can share the message and the JWT with someone and convince them that the message was sent by someone in the company. However, this would require sharing the whole JWT, which includes your name and email, exposing who the sender is. So, how does StealthNote protect this information?

They used a ZK-programming language, Noir, with the following goals in mind:

  • Verify the signature of the JWT using Google's public key
  • Extract the hashed message from the payload
  • Extract the email domain from the payload

The payload and the signature are kept private, meaning they stay on the user’s device and never need to be revealed, while the hashed message, the domain, and the JWT public key are public. The ZKP is generated in the browser, and no private data ever leaves the user's device.

Noir: What is Happening Under the Hood

By executing the program with Noir and generating a proof, the prover (the user who is posting a message) proves that they can generate a JWT signed by some particular public key, and it contains an email field in the payload with the given domain.

When the message is sent to the StealthNote server, the server verifies that the proof is valid as per the StealthNote circuit and validates that the public key in the proof is the same as Google's public key.

Once both checks pass, the server inserts the proof into the database, which then appears in the feed visible for other users. Other users can also verify the proof in the browser. The role of the server is to act as a data storage layer.

Stay up-to-date on Noir and Aztec by following Noir and Aztec on X.